Testmat.ru - Онлайн тестирование
Тесты по математике
Проверить свой уровень!
2005-12 2005-11
2005-10 2005-09
2005-08 2005-07
2005-06 2005-05
2005-04 2005-03
2005-02 2005-01
По темам

На главную Английский язык Русский язык Химия и биология Физика История География Форум
Тест по математике
 

29. Найдите значение x2 + x2x1 + x1, если x1 и х2 - корни квадратного уравнения 2 + 3х - 7 = 0.

A)

-2

B)

-4

C)

-5

D)

-7

 

Правильный ответ:

C

 

Решение:

Общий вид квадратного уравнения: ax2 + bx + с = 0, где a - I коэффициент, b - II коэффициент, с - III коэффициент или свободный член.

 

По теореме Виета:

x1 + x2 = - b/a.

x1 * x2 = c/a.

То есть, при a = 1, произведение корней квадратного уравнения равно свободному члену (с), а сумма корней равна II коэффициенту, взятому с противоположным знаком (-b).

Например:

x2 + 5x + 6 = 0. Значит: x1*x2 = 6, x1+x2 = -5. То есть x1 = -2, x2 = -3.

Еще пример:

3x2 - 7x + 8 = 0. Значит: x1*x2 = 8/3, x1+x2 = 7/3.

 

В данном случае имеется уравнение 2 + 3х - 7 = 0, где по теореме Виета:

x1*x2 = -7/2,

x1+x2 = -3/2.

 

Подставим в наше выражение полученные данные:

x2 + x2x1 + x1 = x2 + x1 + x2x1 = -3/2 + (-7/2) = -3/2 - 7/2 = -10/2 = -5.

 

Категория:

Алгебра

 

В начало | Предыдущий | Следующий

Если вы заметили орфографическую ошибку, пожалуйста, выделите ее мышью и нажмите Ctrl+Enter

Система Orphus


 
  © 2012-2018 “TESTMAT.RU” Онлайн-тестирование по математике с решениями.
При перепечатке материалов и использовании их в любой форме, ссылка на сайт testmat.ru обязательна.
E-mail: testmat.ru@mail.ru